No Access statt Open Access

Mein jüngster Aufsatz ist erschienen. Er kann als Preprint auf arXiv unter diesem Link eingesehen werden. Der Aufsatz ist eine Antwort auf aktuelle Forderungen zu veränderten Publikationsnormen in der Forschung zu Anwendungen des maschinellen Lernens, welche ein erhöhtes Dual-Use-Potential besitzen. Im Aufsatz argumentiere ich, dass Publikationsrestriktionen, wie sie bereits in der IT-Sicherheits- oder der Biotechnologieforschung verankert sind, sich ebenfalls im Bereich des maschinellen Lernens etablieren und anstelle einer generellen Mentalität des Open Access treten müssen. Zweck dieser Restriktionen wäre es, Missbrauchsszenarien beispielsweise bei der KI-gestützten Audio-, Video- oder Texterzeugung, bei Persönlichkeitsanalysen, Verhaltensbeeinflussungen, der automatisierten Detektion von Sicherheitslücken oder anderen Dual-Use-Anwendungen einzudämmen. Im Aufsatz nenne ich Beispiele für bereichsspezifische Forschungsarbeiten, die aufgrund ihres Gefahrenpotentials nicht oder nur teilweise veröffentlicht wurden. Zudem diskutiere ich Strategien der Governance jenes „verbotenen Wissens“ aus der Forschung.